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Systems of stochastic differential equations are investigated. Theorems on ex- 
ponential stability and instability of these with respect to a part of variables [It: 
31 under specific conditions, and, also, on exponential stability and instability 
in the first approximation [4-71 are proved. 

l. Exponential stability with respect te a part of variables. 
Let us consider the system of differential equations of perturbed motion 

ckx /’ dt = X It, x, r: (t, o)f fl.1) 

where E tt. 0) ft > 0) is a measurable random process with values from Ek, 
X (4 X, u) (x G E,, it > 0, u E &) is a measurable Bore1 function X (t, 0, 
u) s 0 with respect to (t, x, n) . We shall consider the problem of stability of un- 
perturbed motion x = 0 with remeet to a part of variables, to be exact, with res- 
pectto K x1,. . ., 5, (m>% n=m-tP, P>O). In conformity with [3] 
we denote these variables by yi = xi (i = 1, . . ., m), and the remaining ones 

by zj = %+j 0 = 1, . . ., p>, In these variables system (1.1) assumes the form 

dx / dr = X It, y, z, li, (c, o)] 
11.2) 

We use the following notation: 11 y I] = sup {I yi 1; i = 1, . . ., m}, 11 z 11 = 

sUP {IziI; i = 1, . . ., p), ana 11 .g 11 =: sup (1 E 1. s-l.. k). 
Let us assume that the process E (t, 0) ana mnctison) X * *’ in (1.2) are such that 

system (1.2) and the inital condition x @of = x0 (WI determine in region 

i! > 0, iI Y II< H = con.% 11% iI< 00, 11 s I/< CQ 
f1.3) 

a new absolutely continuous random process ’ lt, w) with unit probability and con- 
tinuous mathematical expectation with respect to t that can be continued for z _>3 0 
and satisfies the equation 

x (t, 0) = xo (@) -t i x [s, x (8, co), g (s, a)] ds (1.4) 

(see, e. g., [8]). Let us assume that infiegion (1.3) the first m equations of systems 
(1.1) and (1.4) satisfy conditions 

1 xi (t, Y, z, 4 - xi (t, y, 0, u) 1 < a, (t) 11 y II (i = 1s -** * n4 (1.5) 

1 xi (4 YU, 0, 4 - Xi ttt Y’, (-4 u, j \< L (I Y” - Y’ II (1.6) 
(L=const; i=l, . . ..m) 

where(cp (t) is a continuous function when i! > 0 
Definition. The solution x = 0 of the system of Eqs, (1.1) is called expon- 
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entially Y-stable (see t3,4]), in the mean, if it is possible to find an E > 0, such 

tht for ( /I yo (4 11 > cl E, t > t, 

0 II Y 09 01 II; Y (t, a) / x09 Eob < B ( 11 Yo (@)I/) exp r---a (t - to)1 

where a>0 and B>i are independent of to and ( ) denote mathematical 
expectation. 

Let us consider the truncated system of equations 

dXi I (2t = Xi (It, y, 0, g (tp @)I (xi = ‘, *” $ m) IL 7) 

which is obtained from the first .m equations of system (1.2) when z =: 0, We denote 

by Y* tt, ml the solution oftEqs. (1. ‘7) 

rJi* (t, 0) = l&o* (0) f 5 xi ]Is, y” fS> e&o, E (St w)l ds fi = 1, * . , , J1* 8, 

We assume that the solutid* 
58 

* V, 0) 

’ 

is exponentially stable in the mean, i. e. , 
that it is possible to find an y such that any solution 

( 1) yo* (0) II> -C e, t > to 

y* (t, @) of Eqs. (1.7) 

and (1.8. ) when satisfies the ineeuality 

([ 11 Y* (4 4 II; y* (6 4 / yo*, tvol> < B < II yo* (4 II > x (L9) 

wherea > () and B >, 1 are independent of to. 
exp[-- a (t - to)1 

T h e o r e m 1, 1. If the zero solution of system (1.7) is exponentially stable in the 

mean and for all t > 0 the inequality 

t+T (1.10 

s cp 6) 0% < y 
t 

where ?’ > 0 is some number, is satisfied, then for a reasonably small Y the 

zero solution of system (1.1) is exponentially y -stable in the mean. 

Proof. Let T = c5-l In (423) and 6 = d2B where E>O (e<O 
is an a priori specified number which satisfies inequality (1.9). Then ‘for any solution 

Y* 0, 0) of differential equations (1.7), whose initial functions Y* (&J) = yo* 

(0) satisfy the inequality ( 11 Yo* ( @) 11) (: 8 , the inequa~~ 

0 II Y* (g\ll; Y* (t, 03 i yo*, go1> < & I2 
is satisfied for all y 0 and, moreover, 

([II Y* (to -t T, 01 II; Y* (to + T, 0) / yo*, Eol> < 6 / 4 

Let X (6 CO\ be the solution of system (1. l), which is determined by the system 

of input functions x (to) = X0 (0) and % (to) = GO (0) in the region 

~ll~O(~)ll~~~~ II~owII<Q% llgfJ(o)~(<oo 
where 6. is that chosen above. Let also yo* (0) = Yo (a$. Taking into ac- 

count the inequality 
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which follows from c~ndlti~~ (X,5) and f&6) (see [llf), and the inequality 

from systems (L4) and (1.8) we obtain 

for f; E f&, t, -/- Tf. 
obtain 

Applying the ~ro~waI~-~el~a~ lemma {see fX2l) we 

when to < t < to + ?‘? It is aIways possible to select y so that 

for all f = Zfi -j- T I and for 

(t 11 y @a i- T, @tll; J (& c T, wf i x&J> < 6 i’ 4 -/- 6 i 4 = 612 

Then using the known procedure (see, e. g, , [5J) we obtata the inequality 

i, e. f the zeta solution of system (1.1) or (L2) is ~~Fonent~a~~y y-stable in the mean, 



The ore m 1. 1 is also valid when z in @;rlstem (1.2) is a vector of infinite di- 
mension, i, e. when system (1, I) contains a denumerable number of equations. The proof 
is the same, 

Let us consider, as an example, the system 

(1.12) 
dY j dt I- -Y + (p (t) Y sin ZE (t, 0) 

fh 1 dt = G It, Y, 2, E ft, w)] 

where9 (81 is a ~~t~~o~s ~o~egative function when t>,u $ Ect,*f is a non- 
breaking Mdrkovian random process, and function Gr ensures the existence, uniqueness 
and continuability for t > 0 of the solution of system (1.12) which is the random pro- 
cess x (t, w) = (Y (t, o), z (6, tiff, and G [t, 0, 0, r$, (t, o)] s 0. The right-hand side 
of the first equation satisfies conditions (1.5) and (1.6). If supIO, m1 cp (s) c 41. iO-3. 
then system (1.12) satisfies all conditions of Theorem I,, I, and its zero solutions are ex- 
ponentially Y -stable in the mean, 

&,stsbility according to first approximation.Let us consider besides 
system (3.1) the system 

dx i & = x It, x, ri, 0, 41 -I- R fk x, r; t4 wl CLr2 

gvbere R (tt X, U) fx E Em t > 0, It E E'ti) is a Bore1 function measurable with 
respect to (t, x, U), and absolutely integrable over any finite time interval. junctions 

% and ,, with the initial condition x (to) = %I f@ determine in system 
(1.4) the unique absolutely continuous random process with unit probability. Function 

X satisfies with respect to X the Lipschitz condition 

1 Xi (t, X*9 4 - XI ft, x', u) 1 < L 1 xn - x' jj (i-1,...* a) (2.2) 

The process g and function R in (2.1) are such that conditions 
(2.3) 

J Rf (t, x, u) j < qJ (t) IJ cc]] Ii = 13 * * ** 8) 

are satisfied) and Cp ($1 is a continuous function for t > 0 , 
The fo~owing theorem is vafid. 
T h e o r e m 2. 1. If the zero solution of Eqs. (1.1) is exponentially stable in the 

mean and if the inequalities (2.3) and (1.10) are satisfied for all t>o , then 

for reasonably small y the zero solution of Eqs. (2.1) is also exponentially stable in the 
mean, 

The proof is similar to that of Theorem 3.. 1 (see [5]). The same proof is used in the 
case of denumerable systems. Theorem 2.1 was proved in [4,6] in different conditions 
by the Liapunov method. 

3. Exponential instability with respect to a part of variables, 
Let us assume that the right-hand sides of the system of Eqs, (1.1) satisfy conditions de- 
scribed in Sect, 1, and that in (1.3) H is fairly considerable or w = 00. We introduce 
the following definition, 

Definition[l], We callsolution x = 0 of the system of Eqs. (1.1) exponen- 
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tially Y -unstable in the mean, if 

([II Y (4 4 II ; y (4 0) f x0, go]> > B (11 y. (0) II> exp [a(t-t,)l 

wherea > oand 29 Erl- (0,i ] are independent of to and x0 (0). 
Let us assume that solution y* th 0) of system (1. ‘7) is exponentially unstab- 

le in the mean, i.e. that for any t, andYo*{ro) solution Y* (t, 0) satisfies the in- 
equality 

(3.1) 

([II y* (t, 0) 11; Y* (t, w) 1 Y,*, goI> > B (II yo* (0) II> exp Ia(t - to)1 

T he or e m 3 . 1, If the zero solution of the system of Eqs. (1. ‘7) is exponentially 
unstable in the mean and (1.10) is satisfied for all t>O I the zero solution of the 
system of Eqs. (1.1) is exponentially y -unstable in the mean for any reasonably small 

Y l 

Proof* Let T = CC-~ lnSfdB and 6’= r/B where E is an ar- 
bitrary (also, arbi~a~ly small ) positive number, and B and a are numbers that 
appear in (3.1). Equations (1.8) with conditions (I, 6) yield the estimate 

i Y* (t, 0) II< 11 yo* (e$ jl exp LT, t E [CM f0 + 27 (3.2) 

From the first ~2 equations of system (l.4) and Eqs. (1.8) we obtain inequality (1.11). 
Taking into account condition (1.10) and inequality (3.2) we obtain 

(11 Yt(t) - Y* (t) Ii> .< (II YO* II> y exp LT + 

s, [L -t- cp WI (II Y (4 - Y” (4 II> ds 

for to d t d to + T. 
Applying the Gronwall-Bellman lemma we obtain 

(IIy(t)-yy*(t)II)~(IIyo*II)yexp~2LTfy) for t~Gtd~o+~ 

We make Y satisfy condition 

y exp (2LT + y) < Y, B 

where B is the number appearing in (3.1). We have 

(3.3) 
4l Y ft) - y* (t) II, < “f, B (It yo* II) (t E ito, t, -I- T1) 

Let <II Yo* II> > 26. We have <II Y* ft) II> > B <II in* II> for in < 
t<t,+T and (II Y* &I + T) I> > 61a (1 yn* II). Since I Y (0 II > 
II y* w II - II Y (t) - 9’ (t) II* (II Y (t) II> > (II y* (t) II> - (II Y (t) - y* 0) IIjy 

hence with clilowauce for (3.3) we obtain 
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<I Y (6 II> a B (II yo* II> - % B <II ~0' ii> > B& = e 
(II Y (4 II> > 83 for to < t < t, + T 
(11 Y 6, + T) II> > ‘/z (II YO* II> - ‘12 B (It J/O* II> > 

2 (II yo* II) > 46, (1 Y V, + T) II) > 46 

Using the method of complete mathema~cal induction and assuming that 

(3.4) 

(11 Y (t) II) > ,Y-‘E for ts + (n,- 1) T < t < t, + nT 

(II Y Go + nT) II> > ~+‘a 

we shall show that 

<II Y ft) I/> > 2% for 4,+nT<ttt”+(n+1)T 

(I/ Y (h -k (n + 11 T) II> S= zpEf26 

(3*5> 

(3.6) 

We take the instant of time t, + nT = t,‘, as the initial instant and consider 
solution Y* (t) with initial condition y” (to’) = y (ta’). From (3.4) 

(II Y* c~,‘> II> = (II Y (43’) 11, a 2”+Q 

and from (3.1) 

(11 y* (t) 11) > B <II y* (to’) II> for to’ d 6 d to’ + T 

(II Y * (to’ + T) II> a 5/2 (II Y* (to’) II> 

Taking into account (3.3) we obtain 

<Ii y 6) Ii> >J B (11 Y* ‘A,‘) iI> - l/2 B <II Y* (to’) I/> = 
I/, B (11 y* (t,‘f II) > 2% for to’ < t d to’ + T 

<II y @a + T) I)> > ‘is (11 Y” P’3 It> - l/s B (II Y* 60’) lb a 
2 (11 y* (&I’) (I> > 2”+a 6 

The inequalities (3.5) and (3.6) are proved. Setting nT<t--to= 

nT 4 8 < fn f 1) T, from inequality (3.5) we deduce 

trfl y f& @) II; Y CG 0) / X0* goI) > B12S exp al 0 - to) 

&=+B, al=(aIn2)/(ln~) 

The theorem is proved, 
The proof of Theorem 3.1 holds also for denumerable systems, i. e. for infinitely 

dimensional z. 
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Example. Let ‘PI E and G in system 
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(3.7) 

satisfy the conditions stipulated in the example in Sect. 1, ff sW~o,,~ ‘F (tf d 

3*10-p-, system (3.7) satisfies all conditions of Theorem 3-1 and, oo~eqn~~v, 
the zero solution of the system is exponentially Y -unstable in the Mea% 

4. Instability in the first approximation, Let us again consider sys- 
tems (1.1) and (2.1) for which conditions (Z-2), (2.3), and (l.10) are satisfied, In that 

case the following theorem is valid. 

Theorem 4, 1. ff the zero solution of ~qs. (1.1) is exponentially unstable in 
the mean, the zero solution of Eqs. 2.1) is also ~pon~tially unstable in the mean for 

fairly small V, 
The proof is similar to that of Theorem 3.1 (see also [7J), Theorem 4.1 is valid al- 

so for denumerable systems of the form (1.1) and (2.1). 
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